阅读历史 |
请收藏本站网址:hulitxt.com

我们的1654 第731节(3 / 9)

加入书签

们依然推导出银河整体的全部信息。从对称的角度来看,按照居里定理,纯粹的内部视角信息无法推理出以外部视角观察到信息。就像一个人不借助外部因素,无法把自己提起来一样。所以借助了银河系以外的观测信息进行补充。内部视角信息+内部视角观察外部所得信息-≈gt;外部视角的信息。银河的中心、直径、恒星数量估计,这些信息是仅与自身相关,而运动方向及速度、旋转速度信息是从银河外视角观察的。当给出宇宙边界的界定方式、恒星的演变规律、宇宙的模型,那么仅与宇宙自身相关的信息就可以通过观测的数据进行反演。数据同时可以修正模型,这样反复进行,就在对宇宙而言尘埃一样存在的地球上,得到宇宙的景象!而宇宙是膨胀的-≈gt;宇宙具有-≈gt;宇宙居然可能不是永生的!

能量转换的对称问题。功转热,效率100,热转功,效率≈lt;100。因此热功转换不对称。这种不对称产生的后果就是时间单向性。若热功转换对称,则永生都是可能存在。但实际上一个物质能量封闭系统,最终进入热寂。

梅乐芝经理的科普文章(十三)

第13节分形和混沌

标度对称,放大缩小后保持不变,换而言之,对象的一部分和整体相似。一朵白云,取其一半,还是一朵白云。而通常的物体,比如一个汽车,取其一半,只是汽车零件而已。但是,在地球上任何实际的物体,不能持续按照标度对称的方式,反复取其一半。因为到达分子阶段,物体的外在形式已不存在。在我们的想象中,或理论思考中,我们可以认为这样一种局部和整体相似的情况存在,不必反复进行放大或缩小。

海螺的体型,幼年和成年完全可以认为是放大缩小关系。但是人的体型,幼年和成年,完全不同。比如婴儿的眼睛位于头部中间,成人却是位于头部三分之二。婴儿的头部和身高比例是1:5,随着年龄增加,头部身高比例降低到1:7。对动物而言,多数都不满足幼年和成年身体尺寸比例恒定。前面曾阐述过动物的身体重量、摄入食物量、散热状况、身体骨骼承受能力相互之间的关联。因此按比例放大是不可能存在。而海螺类似的动物,其身体类似一个扁平的饼状,螺旋状的管道形成身体结构,内部并无骨骼,移动需求也可以忽略。并且随着体型变大,螺管的厚度也在增加。和其他无恒定比例的动物结构完全不同。

树木和动物有很大区别。每颗树都有根部,依赖根部从土壤获得的水分和矿物质。每根树枝依赖母枝提供养料,母枝对树枝而言就是土壤。则树枝的成长过程和树木本身完全类似,仅仅是规模不同。而动物的身体各部分功能不同,整体才能组成生命体。且各部分的生长方式完全不同,对身体而言,不存在局部和整体类似的生长状况(少数动物,比如蚯蚓,身体分为两段,可以独自继续成长。这类型的动物接近标度对称)。

自然界中,局部和整体相似处处存在。一个树枝,上有分枝,分枝又有小枝,小枝还有树叶。这个和树本身就很相像。从卫星角度观察海岸线,曲曲折折。从飞机上观看海岸线,曲曲折折。走在海边,看海水的边缘,曲曲折折。虽然不尽相同,但是曲曲折折的形象完全雷同。攀登山峰,总是看到更远处的高山。待到登上高峰,发现远处连绵不绝的山脉继续在前方蔓延。虽然形状稍有不同。但是连绵不绝形成的山色涂层,如同画布上的色带一样,颜色逐渐递浅。虽不是秋水共长天一色,却是极目楚天舒的效果。无论在那里登山,层层叠峦的风景依然历历在目,禁不住让人喊道:我又回来了。

现代电脑游戏的效果越来越逼真,山脉、云彩、森林、星球都很难分辨是照片或电脑生成。这些外在差异巨大的对象,以计算机的视角来看区别很小,整体的计算机描述没有区别,仅仅是若干细节的数值不同。我们来观看如何生成雪花的轮廓。线段长为3,对其三等分,补充两个长度为1的线段,令补充的线段和三等分中间的线段组成一个正三角形。然后去掉线段三等分中间的一段。我们把这个过程称为构造过程。现画一个正三角形,对每一个边进行构造过程,则产生12个线段,对新生成的12个线段再进行构造过程。则产生48个线段。对新生成的线段重复进行构造过程,持续不断。最后就生成了一朵雪花的轮廓。最早由瑞典人koch构造,称为koch雪花。

koch雪花有什么特点呢?每构造一次,线段的长度就为原长度的4/3倍。重复进行下,则线段长度无限增加。雪花的面积最终是多少呢?设原三角形面积为1,最后的雪花面积为16。面积是有限值,而长度无限增加!通常的线段长度都是有限的,而koch构造的线段长度无限,按照前面定义的一维(长度)、二维(面积)、三维(体积),koch的线段并不满足通常的维数定义。虽然是线段,不可能是二维,但长度无限,也不是一维情况。为了能够使用维数来定义对象,我们取消维数是整数的要求。那么koch线段的维数就处于一维和二维之间的某个数值!标度对称中的增加系数,

↑返回顶部↑

书页/目录